Regenerative Inflammation: Lessons from Drosophila Intestinal Epithelium in Health and Disease
نویسندگان
چکیده
Intestinal inflammation is widely recognized as a pivotal player in health and disease. Defined cytologically as the infiltration of leukocytes in the lamina propria layer of the intestine, it can damage the epithelium and, on a chronic basis, induce inflammatory bowel disease and potentially cancer. The current view thus dictates that blood cell infiltration is the instigator of intestinal inflammation and tumor-promoting inflammation. This is based partially on work in humans and mice showing that intestinal damage during microbially mediated inflammation activates phagocytic cells and lymphocytes that secrete inflammatory signals promoting tissue damage and tumorigenesis. Nevertheless, extensive parallel work in the Drosophila midgut shows that intestinal epithelium damage induces inflammatory signals and growth factors acting mainly in a paracrine manner to induce intestinal stem cell proliferation and tumor formation when genetically predisposed. This is accomplished without any apparent need to involve Drosophila hemocytes. Therefore, recent work on Drosophila host defense to infection by expanding its main focus on systemic immunity signaling pathways to include the study of organ homeostasis in health and disease shapes a new notion that epithelially emanating cytokines and growth factors can directly act on the intestinal stem cell niche to promote "regenerative inflammation" and potentially cancer.
منابع مشابه
Tissue communication in regenerative inflammatory signaling: lessons from the fly gut
The intestine, as a barrier epithelium, serves in the first line of defense against invading pathogens and damaging agents that enter the body via food ingestion. Maintenance of intestinal homeostasis is therefore key to organismal health. To maintain homeostasis, intestinal stem cells (ISCs) continuously replace lost or damaged intestinal epithelial cells in organisms ranging from Drosophila t...
متن کاملIntestinal inflammation and stem cell homeostasis in aging Drosophila melanogaster
As a barrier epithelium, the intestinal epithelium has to coordinate physiological functions like digestion and nutrient resorption with the control of commensal bacteria and the prevention of pathogenic infections. It can therefore mount powerful innate immune and inflammatory responses, while, at the same time, maintaining tissue homeostasis through regenerative processes. How these different...
متن کاملRole of DUOX in gut inflammation: lessons from Drosophila model of gut-microbiota interactions
It is well-known that certain bacterial species can colonize the gut epithelium and induce inflammation in the mucosa, whereas other species are either benign or beneficial to the host. Deregulation of the gut-microbe interactions may lead to a pathogenic condition in the host, such as chronic inflammation, tissue injuries, and even cancer. However, our current understanding of the molecular me...
متن کاملER stress transcription factor Xbp1 suppresses intestinal tumorigenesis and directs intestinal stem cells
Unresolved endoplasmic reticulum (ER) stress in the epithelium can provoke intestinal inflammation. Hypomorphic variants of ER stress response mediators, such as X-box-binding protein 1 (XBP1), confer genetic risk for inflammatory bowel disease. We report here that hypomorphic Xbp1 function instructs a multilayered regenerative response in the intestinal epithelium. This is characterized by int...
متن کاملLifespan Extension by Preserving Proliferative Homeostasis in Drosophila
Regenerative processes are critical to maintain tissue homeostasis in high-turnover tissues. At the same time, proliferation of stem and progenitor cells has to be carefully controlled to prevent hyper-proliferative diseases. Mechanisms that ensure this balance, thus promoting proliferative homeostasis, are expected to be critical for longevity in metazoans. The intestinal epithelium of Drosoph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2013